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Supplementary Note 1: General form of the reconstruction algorithm in real 

space and its relationship to the conventional workflow in the Fourier Domain 

The origin of the concept to reconstruct the SR image in real space dates back to the earliest 

work of Lukosz
20

 in the 1960s, which appeared as an early thought of SR-SIM. In 2001, So et 

al.
21

 comprehensively interpreted the principle of SR-SIM in the spatial domain and gave the 

explicit expression of the spatial domain interpretation of SR-SIM. However, this interpretation 

was not further exploited as a reconstruction algorithm. In 2008, Somekh et al.
22

 established a 

new reconstruction method to facilitate quantitative noise analysis of SR-SIM, which yielded the 

SR image from the raw SIM images without the need to perform Fourier transforms. This was 

the first time that spatial domain interpretation appeared as a reconstruction method. Since then, 

no new progress on spatial domain processing was reported. Till 2021, we further exploited it a 

rapid reconstruction algorithm
23

 termed spatial domain reconstruction algorithm. This resulted in 

a heated discussion about spatial domain processing
48,49

. In our previous work, the spatial 

domain reconstruction algorithm was shown to be 7-fold faster than conventional Wiener-SIM. 

However, its phase shifts are limited to a specific value (0, 2π/3, 4π/3), and its relationship with 

the conventional frequency-domain reconstruction algorithm was not distinctly deduced, which 

may prohibit its widespread application in SR-SIM communities. In this note, we further present 

a general form of the algorithm and clarify the relation of this method with the conventional 

reconstruction algorithm implemented in the Fourier domain. 

1.1  Deduction of the general form of the reconstruction algorithm in real space 

For linear structured illumination microscopy, the detected intensity distribution at the 

sensor plane can be described by the following equation 

 ) ( ) [ ( ) ( )] (D O I H  r r r r  (1) 
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where O(r) denotes the spatial distribution of fluorophore in the labeled specimen, I(r) represents 

the intensity distribution of the excitation field, and H(r) depicts the point spread function of the 

microscope. The symbol  represents the convolution operation. By shifting the excitation field 

with a lateral movement, the above equation can be revised as 

 ( ) [ ( ) ( )] ( )i iD O I H  r r r - r r  (2) 

where   
  denotes the lateral shift of the field. Without loss of generality, we only consider the 

structured light field in one dimension. Therefore, the vector r can be replaced by a scalar x: 

 ( ) ( ) ( ) ( )
i i

D x O x I x x H x x dx        (3) 

For fringe patterns, the illumination field can be described by a cosine function： 

 0 0( ) [1 cos( )]I x I m x     (4) 

where I0, m, ω, 0 denote the average intensity, the modulation depth, the angular frequency, and 

the initial phase of the illumination field, respectively. 

Assuming there exists c1(x), c2(x), and c3(x) that makes the following equation always true 

for any O(x) and H(x), the effective PSF of the system can be obtained by multiplying the wide-

field PSF with a modulation function 1 cos( )x : 

 SR-SIM 1 1 2 2 3 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) {[1 cos( )] ( )}I x c x D x c x D x c x D x O x x H x       (5) 

As a result, the FWHM of the effective PSF turns out to be half that of wide-field PSF, with 

which the super-resolution image can be directly obtained. Then, how to get the c1(x)、c2(x)、

c3(x) is the key procedure of the above hypothesis. 

By substituting Eq. 2 and Eq. 3 into the above formula, the precondition for the 

establishment of Eq.5 can be simplified as 
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3

0 0

1

0 0

( )[1 cos( )] 1 cos( )

1 cos[( ) ( )]

i i

i

I c x m x x x x

x x

    

   



       

    


 (6) 

By rewriting both sides of this equation as a function of 0
cos( )x    and 0sin( )x   , 

above equation can be transformed into 

 

3 3 3

0 0 0 0 0

1 1 1

0 0 0 0

( ) [ ( ) cos( )]cos( ) [ ( ) sin( )]sin( )

1 cos( ) cos( ) sin( ) sin( )

i i i i i

i i i

I c x mI c x x x mI c x x x

x x x x

     

       

  

      

       

  
 (7) 

According to the orthogonality of 0
cos( )x    and 0sin( )x   , c1(x), c2(x), c3(x) must 

satisfy the following relations if we want the above formula to be constant for any x and x": 

 
3

1 0

1
( )

i

i

c x
I

  (8) 

 
3

0

1 0

1
( ) cos( ) cos( )

i i

i

c x x x
mI

  


    (9) 

 
3

0

1 0

1
( )sin( ) sin( )

i i

i

c x x x
mI

  


    (10) 

Assuming the phase shift to be     
             , above relations can be expressed as 

follow: 

 

0

1

1 2 2 0

0

1 2 3

0

0

1

1 1 1 ( )
1

1 cos cos ( ) cos( )

0 sin sin ( )
1

sin( )

I
c x

c x x
mI

c x

x
mI

   

 

 

 
 
   
   

      
        

  
 

 (11) 

Let 
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 1 2

1 2

1 1 1

1 cos cos

0 sin sin

 

 

 
 

  
 
   

S   (12) 

As long as the phase shift satisfies 
2 1 1 2

sin( ) sin sin 0         S , c1(x)、c2(x)、

c3(x) always can be solved as 

 

1 0

1

2 1 2 0

0

3 1 2

0

0

2 1 1 2 2 1

2 2 2

1 1 1

1

( ) 1 1 1
1

( ) 1 cos cos cos( )

( ) 0 sin sin
1

sin( )

sin( ) sin sin cos cos
1

sin sin 1 cos

sin sin cos

   

 

 

     

  

  



 
 
    
    

       
          

  
 

        

     

    

I
c x

c x x
mI

c x

x
mI

S

0

0

0

0

0

1

1
cos( )

1
1

sin( )

 

 

 
 
  
  

  
  

  
  

 

I

x
mI

x
mI

 (13) 

The above formulas are the general expressions of c1(x)、c2(x)、c3(x). Specifically, when 

the phase shifts are set as         , the formulas can be simplified to: 

 

0

1

2 0

0

3

0

0

11 1 2cos 2cos 1

2(1 cos ) 2(1 cos ) 2sin
( )

cos cos 1 cos 1
( ) cos( )

1 cos 1 cos sin
( )

1 1 1 1
sin( )

2(1 cos ) 2(1 cos ) 2sin

 

  

  
 

  

 
  

   
        

   
            

            

I
c x

c x x
mI

c x

x
mI

  (14) 

More specifically, if we limit the phase shift as              , the expressions of c1(x)、

c2(x)、c3(x) can be further simplified to the equation below: 
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0

0 0

1

2 0 0

0 0

3

0 0

0 0

1 1 21 2
[1 cos( )]0

33 3
( )

1 1 3 1 1 2 2
( ) cos( ) [1 cos( )]

3 3 3 3 3
( )

1 1 3 1 1 2 2
sin( ) [1 cos( )]

3 3 3 3 3

 


   


   

    
     

     
     

           
     

     
          

    

x
I I m

c x

c x x x
mI I m

c x

x x
mI I m





  (15) 

which is identical to the result provided in Ref. [23]. 

The coefficient functions ci(x) are fully determined by the illumination parameters (initial 

phase, pattern frequency, phase shifts, and the modulation depth), which is however invariant 

with the distribution of the specimen. Therefore, after the illumination parameters are determined, 

the coefficients can be precalculated and be reused for continuous reconstructions. As long as the 

illumination parameters do not change, a super-resolution image without deconvolution can be 

directly obtained by multiplying the raw images with these coefficient functions and 

superimposing the products, as described in Eq. (5), thus greatly reducing the execution time of 

the reconstruction. 

1.2 Demonstration of the relationship of the reconstruction algorithm in real space and the 

conventional reconstruction approach in Fourier domain 

The 3×3 matrix on the right side of Eq. (13) is determined by the phase shifts of the fringes, 

which remain constant during calculation. Denoting the elements of the matrix as Cp,q (p=1,2,3; 

q=1,2,3), the equation can be converted to  

 

0

1 11 12 13

2 21 22 23 0

0

3 31 32 33

0

0

1

( )
1

( ) cos( )

( )
1

sin( )

 

 

 
 
    
    

     
    

     
  

 

I
c x C C C

c x C C C x
mI

c x C C C

x
mI

  (16) 
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where the coefficient matrix can be calculated as follow  

 

11 12 13 2 1 1 2 2 1

21 22 23 2 2 2

31 32 33 1 1 1

sin( ) sin sin cos cos
1

sin sin 1 cos

sin sin cos 1

     

  

  

           
   

     
   
          

C C C

C C C
S

C C C

  (17) 

 

As such, the super-resolution image can be transformed to the following expression 

 

SR 1 1 2 2 3 1

11 1 21 2 31 3

0

12 1 22 2 32 3 0

0

13 1 23 2 33 3 0

0

( ) ( ) ( ) ( ) ( ) ( ) ( )

1
[ ( ) ( ) ( )]

1
[ ( ) ( ) ( )]cos( )

1
[ ( ) ( ) ( )]sin( )

 

 

  

  

   

   

D x c x D x c x D x c x D x

C D x C D x C D x
I

C D x C D x C D x x
mI

C D x C D x C D x x
mI

  (18) 

To reveal the relation between spatial and frequency domain reconstruction, we introduce 

three intermediate images R0(x)、R1(x)、R2(x) as below  

 

0 11 1 21 2 31 3

0

1 12 1 22 2 32 3

0

2 13 1 23 2 33 3

0

1
( ) [ ( ) ( ) ( )]

1
( ) [ ( ) ( ) ( )]

1
( ) [ ( ) ( ) ( )]

  

  

  

R x C D x C D x C D x
I

R x C D x C D x C D x
mI

R x C D x C D x C D x
mI

  (19) 

which are linear combinations of the three raw images D1(x) 、 D2(x) 、 D3(x), and the 

combination coefficients are completely determined by the illumination parameters. Then, the 

super-resolution image can be rewritten as  

 SR-SIM 0 1 0 2 0( ) ( ) ( ) cos( ) ( )sin( )       I x R x R x x R x x   (20) 

In other words, the super-resolution image without deconvolution in Eq. (5) can be obtained 

in another way: first calculate R0(x)、R1(x)、R2(x) with Eq.(19); then multiply R0(x)、R1(x)、
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R2(x) respectively with 1, 0
cos( ) x , 0sin( ) x  and finally add the products together. This 

new reconstruction workflow implemented in real space provides insight into the connection of 

the reconstruction algorithm in real space and the conventional workflow in the Fourier Domain. 

By substituting the expressions of the coefficients in Eq. (17) into Eq. (19) and expressing 

D1(x)、D2(x)、D3(x) as the convolution form shown in Eq. (2) (without loss of generality, let 

I0=1 ), R0(x)、R1(x)、R2(x) can be derived to the following form  

 

0 0

1 0

2 0

( ) ( ) ( ) ( )

( ) [ ( ) cos( )] ( )

( ) [ ( ) sin( )] ( )

 

 

  

  

  

R x O x H x S k

R x O x x H x

R x O x x H x

  (21) 

in which R0(x) is the zero-order component of the specimen. Further, R1(x)、R2(x) can be derived 

as follow  

 

0 0

0 0

0 0

0

1 0

( ) ( )

1 1

2 0

(

( ) [ ( ) cos( )] ( )

e e
=[ ( ) ] ( )

2

e e
[ ( ) e ] ( ) [ ( ) e ] ( )

2 2

e e
[ ( ) ( )] [ ( ) ( )]

2 2

( ) [ ( ) sin( )] ( )

e
=[ ( )

   

 
 

 

 

 

 

 

  







 



  




   

   

  

i x i x

i i

i x i x

i i

i x

R x O x x H x

O x H x

O x H x O x H x

O k H k O k H k

R x O x x H x

O x
0

0 0

0 0

) ( )

1 1

e
] ( )

2

e e
[ ( ) e ] ( ) [ ( ) e ] ( )

2 2

e e
[ ( ) ( )] [ ( ) ( )]

2 2

 

 
 

 

 

 







 




   

   

i x

i i

i x i x

i i

H x
i

O x H x O x H x
i i

O k H k O k H k
i i

  (22) 

Therefore, the super-resolution spectra in the conventional frequency-domain reconstruction can 

be represented by 
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0

0

1 2

1 2

( ) ( ) e [ ( ) ( )]

( ) ( ) e [ ( ) ( )]










  

  

i

i

O k H k R x iR x

O k H k R x iR x
  (23) 

By shifting them back to their original position, the first-order components can be derived 

as 

 

 

 
  

 

 
 

0

0

0

1

1

1

1 2

( )

1 2

1

1

1

1 2

1 2

( ) ( ) ( ) ( ) ( ) e

= e ( ( ) ( )) e

= ( ) ( ) e

( ) ( ) ( + ) ( ) ( ) e

= e ( ( ) ( )) e

= ( ) ( ) e



 

 



 

 

 









 



 



     

  



    

  



i x

i i x

i x

i x

i i x

S k O k H k O k H k

R x iR x

R x iR x

S k O k H k O k H k

R x iR x

R x iR x 0( ) i x

  (24) 

Eventually, the super-resolution image of the specimen can be obtained by adding the above two 

first-order components to the zero-order component and inversely transforming the sum back to 

real space: 

 

 

       0 0

1

SR-SIM 0 1 1

1

( ) ( )1

0 1 2 1 2

0 1 0 2 0

( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( + ) ( ) ( )

2

1 1
( ) ( ) ( ) e ( ) ( ) e

2 2

( ) ( ) cos( ) ( ) sin( )

   

 

   



 



  

  

 
      

 

 
     

 

    

i x i x

I x S k S k S k

O k H k O k H k O k H k

R x R x iR x R x iR x

R x R x x R x x

 (25) 

We can see that Eq. (20) and Eq. (25) are exactly the same. The former is deduced by the 

reconstruction workflow in real space, while the latter is obtained by the conventional method 

implemented in the Fourier domain. In the meantime, the intermediate formulae Eq. (22) and Eq. 

(23) depict the relationship between the two reconstruction algorithms, which is the basis of the 

JSFR-SIM.  
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To clarify the above relationships clearly, a relation diagram is presented in Fig. S7. For the 

spatial domain reconstruction algorithm, the super-resolved image without deconvolution can be 

obtained by multiplying the raw images with the pre-calculated coefficient functions and adding 

the products up, as shown in Eq. (5). In constrast, in the conventional reconstruction approach in 

the Fourier domain, the three spectrum components ( ) ( )O k H k , ( - ) ( )O k H k , ( + ) ( )O k H k  

are firstly separated by solving an inverse matrix equation. Afterwads, by shifting ( - ) ( )O k H k , 

( + ) ( )O k H k  respectively to the right position and summing up all three components together, 

the super-resolved image without deconvolution can eventually be obtained by inverse Fourier 

transformation (Eq. (25)). Obviously, the workflow in Fourier domain is much more complex 

than that in real space. 

In this note, to reveal the connection of above two algorithms, another workflow equivalent 

to the spatial domain reconstruction algorithm is exploited by rearranging the variables in the 

final super-resolultion image. First, nine intermediate images R0(x), R1(x), and R2(x) are obtained 

by recombining the raw images with specific scalar coefficients, as indicated by Eq.(19). By 

multiplying R0(x)、R1(x)、R2(x) respectively with 1, 0
cos( ) x , 0sin( ) x  and adding the 

products together, we can also get the super-resolution image without deconvolution. It’ worth 

noting that, in practical use, this workflow is more complex than that of the original algorithm in 

real space, as depicted in Eq.(5). Therefore, it can only be applied to demonstrate the relationship 

of the algorithms implemented in the Fourier domain and real space, however, is not suitable to 

be promoted as a new algorithm. The relationship of the two algorithms is manifested as the 

relation of the recombined raw images R0(x)、R1(x)、R2(x) and the frequency components 

( ) ( )O k H k , ( - ) ( )O k H k , ( + ) ( )O k H k , which can be converted to each other by Eq. (22) 
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and Eq.(23), as shown in Fig. S7d. Based on the relationship, the OTF compensation and the 

OTF attenuation approaches in the Fourier domain can be transferred into real space, providing a 

simple and rapid reconstruction protocol for thick specimens (Supplementary Note 2).  

It should be noted that both reconstruction processes discussed here do not involve the 

deconvolution procedure. In conventional Wiener-SIM, the Wiener deconvolution is carried out 

by multiplying the spectrum components of the specimen with the pre-measured OTF before 

moving them to their true positions (also referred to as OTF compensation). However, in the 

SDR workflow, a routine Wiener deconvolution is instead employed by treating the above 

intermediate image as a new image acquired with a shrunken PSF, which is different from that of 

Wiener-SIM. In addition, for thick samples, to suppress the background fluorescence and 

periodic honeycomb artifacts, the OTF attenuation strategy is employed by attenuating the 

shifted spectrum components with an empirical Gaussian function, which was not included in the 

spatial domain reconstruction algorithm. In summary, the SDR reconstruction workflow differs 

from the conventional Wiener-SIM because of the absence of OTF compensation and OTF 

attenuation, which is prone to background fluorescence and honeycomb artifacts thereby limiting 

the resolution when imaging thick specimens (Fig. S1g).  
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Supplementary Note 2: Principle of JSFR-SIM 

Based on the relationship of the two algorithms implemented in the Fourier and spatial domains, 

the SDR reconstruction workflow differs from the conventional Wiener-SIM because of the 

absence of OTF compensation and OTF attenuation. In this note, we prove the OTF 

compensation and OTF attenuation in the Fourier domain are equivalent to a preset notch 

filtering operation on the initial raw images. That is, these crucial procedures in conventional 

Wiener-SIM (OTF compensation and OTF attenuation) can be naturally and concisely applied to 

the reconstruction workflow in real space. On this basis, we developed a concise reconstruction 

workflow to rapidly obtain the optically sectioned, super-resolution image of a thick specimen by 

combining the spatial domain processing with the OS-SR-SIM implemented in the frequency 

domain, that is, the optically sectioned, super-resolution image of thick specimen can be rapidly 

attained by implementing the following procedures: 

1) Estimate the parameters of illumination, including the wave vectors, the initial phases, 

and the modulation depth, and calculate the coefficient functions for each raw image 

with the estimated illumination parameters. 

2) Calculate the reprocessed raw images by filtering the raw images I1(x)、I2(x)、I3(x) with 

a preset band-pass filter  1 *
[1 ( )] ( )


 a Hk k . 

3) Multiply the coefficient functions with the filtered raw images. 

4) Sum the above results up and calculate the final image via Wiener filtering.  

Considering this workflow combines the merits of both spatial domain reconstruction and 

the OS-SR-SIM implemented in the frequency domain, we, therefore, name it Joint Space and 

Frequency Reconstruction (JSFR-SIM). 
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On the contrary, the workflow of the conventional OS-SR-SIM algorithm in the frequency 

domain could be summarized as: 

1) Estimate the parameters of illumination, including the wave vectors, the initial phases, 

and the modulation depth. 

2) Transform all the raw images into the frequency domain. 

3) Solve all the frequency components of the specimen with matrix equations.  

4) Multiply these components with the sectioned OTF, and shift them back to the right 

position. 

5) Sum all the sectioned spectra up and filter the expanded spectrum. 

6) Calculate the final image by transforming the above spectrum back into the spatial 

domain. 

2.1  Conventional Wiener-SIM algorithm implemented in Fourier domain 

For 2D SR-SIM, the raw images are often acquired with nine sinusoidal excitation patterns with 

three equally spaced phase shifts in three orientations, which can be modeled as 

 
 

 
, ,

, ,

( ) ( ) ( ) ( )+ ( )

( ) [1 cos( )] ( ) ( )

 

    

d i d i

d d d i d i

D O I H B

O m H B

r r r r r

r k r r r
  (26) 

where r is the spatial domain coordinates, O(r) denotes the distribution of the specimen, I(r) 

represents the intensity distribution of the sinusoidal excitation patterns, md is modulation depth 

of the illumination pattern, H(r) indicates the point spread function of the optical microscopy, 

,
( )

d i
B r  indicates the background in the raw image, kd and φd,i are respectively the wavenumber 

and the phase of the excitation pattern, the subscripts d (=1,2,3) and i (=1,2,3) respectively 

denote the index of the pattern orientation and the phase shifts. 
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To recover the SR image, the raw images are Fourier transformed to the frequency domain. 

Then, a set of linear equations which consists of the zero-order information component (lower 

frequency information) and ±1
st
-order information components (higher frequency information) 

of the specimen can be constructed as follows
1
:  
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d d

d d

d d

i i

d d d d

i i

d d d d d

i i
d d dd d

m e m e O H B D

m e m e O H B D

O H B Dm e m e

k k k k

k k k k k

k k k k k

  (27) 

where k denotes the frequency coordinates, 
,
( )

d i
D k  represents the raw images in the Fourier 

domain, and 
,
( )

d i
B k  is the spectrum of the background fluorescence in the raw images. Then the 

spectrum components can be separated with the equation set if the illumination pattern 

parameters kd, φd,i, md and the background information 
,
( )

d i
B k  are determined.  

In situations where the background fluorescence is subtle, the background term in the Eq. 

(27) can be neglected. For instance, if the SIM setup works in total-internal-reflection (TIR) 

excitation mode, only the specimen within nearly 100 nm is excited, which results in neglectable 

background information in the raw images. Also, for thin and sparsely distributed specimens, 

little out-of-focus fluorescence will be collected by the camera. 

Denoting the zero-order component and ±1
st
-order components 

,0
( )

d
S k , 

, 1
( )

d
S k  as 

following 

 

,0

, 1

, 1
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( ) ( ) ( )

( ) ( ) ( )







 

 

d

d d

d d
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k k k

k k k k

k k k k

  (28) 

These components can be directly solved by 
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  (29) 

Then, an expanded spectrum of the sample can be recovered by shifting higher frequencies 

to the correct position in frequency space. To get a nearly isotropic restoration of the SR image, 

the extended spectra at different orientations (0°, 60°, 120°) can be combined as follows:  

 
3

SR ,0 , 1 , 1

1

( ) ( ) ( ) ( )
d d d

d

I S S S
 



    k k k k   (30) 

To compensate for the modulation of the OTF on the images and improve the signal-to-

noise ratio at peripheral regions of the spectrum, a Wiener-type filter is adopted as below: 
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k
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  (31) 

where each component is multiplied with the conjugate of the 2D OTF. This process is 

hereinafter termed OTF compensation. By summing these components up pointwise and dividing 

their sum by the sum of the squares of the OTFs plus a small constant, the final super-resolved 

image can be obtained. This workflow is frequently used in TIRF-SIM for the observation of thin 

samples. 

However, as the majority of eukaryotic cells are at least several microns thick in the axial 

direction, the background information cannot be neglected. Consequently, the background term 

,
( )

d i
B k   in the left-hand of Eq. (27) should be treated as an additional term on the separated 

components. 

Considering the 3×3 matrix in Eq. (27) is full-rank, ,
( )

d i
B k  can be expressed as 
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where 
,0

( )
d

b k  and 
, 1

( )
d

b k  are additional terms appended to the separated components. In the 

end, the spectrum components solved with Eq. (27) can be modified as 
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  (33) 

Considering the background mostly contributes to the low-frequency components, these 

additional terms will present a spectrum spike at the zero-position in frequency coordinates. 

Therefore, after moving these components to their proper position, the spectrum spike located at 

zero-position will also be moved to ±kd, which results in six spectrum spikes (3×2) in the final 

spectrum, as shown in Fig. S1d. This is the source of the honeycomb artifacts induced by thick 

specimens (Fig. S1b). 

In general, to restrain the out-of-focus background, the spectrum of the super-resolution 

image is typically obtained by removing the zero-order components of the specimen
15

: 

 
3

OS-SR , 1 , 1

1

( ) ( ) ( )
 



    d d

d

I S Sk k k   (34) 

with which the background fluorescence contained in 
,0

( )
d

S k  is removed. However, it does not 

remove the out-of-focus information contained within the missing cones of the first order 

passbands, which is therefore helpless to eliminate the honeycomb artifacts in the final image.  

To circumvent this problem, O’Holleran et al. proposed a linear reconstruction method that 

maximizes the axial frequency extent of the combined 2D structured illumination passband by 

attenuating the shifted spectrum components with the following equation
14
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  (35) 

where k denotes the 2-dimensional wave vector in the frequency domain, d
k  represents the 

wave vector of the structured illumination in nth orientation. a(k) is a Gaussian function, which 

is defined by 

 

2

2
2

att
( )

k
a a e 





k

k   (36) 

in which the attenuation amplitude aatt and the attenuation width kσ are empirically adjusted 

parameters. 

However, in practice, we prefer the simpler attenuation function 1 ( ) a k  initially developed 

by Wicker et al
13

 for the zero-order component, rather than the attenuation function 

( ) ( )  d da ak k k k  designed by O’Holleran et al
14

. Similar to ( ) ( )d da a  k k k k , the 

simpler function 1 ( ) a k  also has a sunken region in the vicinity of zero, which therefore can 

effectively suppress the background information in the zero-order frequency component. 

Importantly, it reserves the useful middle- and high-frequency information in the zero-order 

component, which was mostly removed by the initial attenuation function ( ) ( )  d da ak k k k  

but very useful and important to portray the true morphology of the specimen. For these reasons, 

the simpler function is more widely used to attenuate the zero-order component for OS-SR-SIM 

reconstructions, including the famous Fair-SIM
17

 and the SR-OS-SIM code provided by Florian 

Ströhl (downloaded at the website: laser.ceb.cam.ac.uk). Also, a recent article about the high-

fidelity reconstruction of SR-SIM
50

 employed the identical attenuation function for the zero-

order frequency component, whose explicit expression can be found in its supplementary notes. 

As such, Eq. (35) can be further simplified as 
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To flatten the frequency response of the optical transfer function (OTF) and noise, a Wiener 

filter is generally adopted by modifying the above equation as: 
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 (38) 

where α denotes the Wiener parameter. Also, other auxiliary processing tricks like apodization 

are usually adopted to improve the isotropy of the effective OTF.  

2.2 JSFR-SIM algorithm based on spatial domain processing 

In the SDR algorithm implemented in real space
23

, the super-resolved image without 

deconvolution is directly attained by the superposition of the designed phase-shifted patterned 

illumination images Dd,i(r) multiplied with each corresponding coefficient function 
,
( )

d i
c r , that 

is, 

 
3 3

SR , ,

1 1

( ) ( ) ( )
d i d i

d i

I c D
 

r r r   (39) 

where 
,
( )

d i
c r  are constant coefficient functions determined by the illumination parameters, 

including the modulation depth, the spatial frequency, the initial phase, and the phase shift. In the 

previous work
23

, the phase shifts are limited to a specific value (0, 2π/3, 4π/3). This method is 

compatible with all possible phase shifts. By assuming the phase shifts is preset as k0δi= {0, Δφ, 

2Δφ}, a general form of 
,
( )

d i
c r  could be derived as the following equations (see details in 

Supplementary Note 1) 
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 (40) 

where φd,0 is the initial phase of the pattern in the dth orientation. As such, the reconstruction 

algorithm implemented in real space can be extended to other commonly-used phase shifts, 

including (0, π/2, π), (0, 3π/5, 6π/5), and other possible values. 

By rewriting the above coefficient functions in matrix form, the relationship of the spatial 

domain processing and frequency domain processing can be deduced (Supplementary Note 1). In 

brief, the relation of spatial domain images and frequency components can be concluded as 
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where Rd,0(r), Rd,1(r), and Rd,2(r) are linearly recombined raw images with specific coefficients 

extracted in the coefficient functions 
,
( )

d i
c r  (see Eqs. (16)-(19) in Supplementary Note 1). 

Based on this relation, we find the result recovered in real space is equal to that of 

conventional reconstruction protocol without OTF compensation and OTF attenuation (see 

Supplementary Note 1 for details). In the frequency domain, these two tricks are implemented by 

multiplying an attenuated OTF   *
1 ( ) ( ) a Hk k  on the spectrum components, that is, the three 

spectrum components are respectively modulated as   *

,0
1 ( ) ( ) ( )

d
a S Hk k k , 

  *

,+1
1 ( ) ( - ) ( )

d d
a S Hk k k k , and   *

, 1
1 ( ) ( ) ( )


 

d d
a S Hk k k k , as shown in Eq.(38), before 

moving them to their proper positions. Apparently, the magnitude of illumination pattern-spatial 
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frequency |kd| should be smaller than the cutoff frequency of the OTF to guarantee the 

effectiveness of the attenuation functions. 

Therefore, based on the relationship in Eq. (41), we have 
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Let us define three intermediate images 
,0

( )
d

U r , 
,1
( )

d
U r  , and 

,2
( )

d
U r  as 
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The above relation can be rewritten as 
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which presents a high similarity with Eq. (41) if we consider the attenuated components at the 

left of Eq. (44) as three new spectrum components.  

Considering that R1(x)、R2(x)、R3(x) is a linear superposition of the raw images, the filter 

operation in Eq. (43) can be directly transferred onto the raw images Dd,1(r), Dd,2(r), and Dd,3(r): 

 

 

 

 

1 *

,1 ,1

1 *

,2 ,2

1 *

,3 ,3

( ) ( ) [1 ( )] ( )

( ) ( ) [1 ( )] ( )

( ) ( ) [1 ( )] ( )







   

   

   

d d

d d

d d

D D a H

D D a H

D D a H

r r k k

r r k k

r r k k

  (45) 

By treating D'd,1(r), D'd,2(r), and D'd,3(r) as Dd,1(r), Dd,2(r), and Dd,3(r), the processing can 

be implemented with the previous spatial domain reconstruction algorithm, that is, multiplying 
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the filtered raw images with corresponding coefficient functions and sum them up. The final 

super-resolution image is a superposition of the results of the three different pattern orientations. 

Similarly, a Wiener filter can also be applied to the obtained OS-SR image by the following 

equation: 
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It’s worth noting that selecting appropriate parameters of the attenuation function is very 

important for a successful reconstruction. As demonstrated above, the empirical parameters aatt 

and kσ in the attenuation function here are inherited from the conventional Wiener-SIM. 

Therefore, the adjustment of these two parameters is in principle identical to that of the 

conventional Wiener-SIM. Thereinto, the attenuation amplitude aatt is generally employed to 

adjust the optical sectioning performance of OS-SR-SIM, which ranges from 0 to 1, depending 

on the background level in the raw data. For thin specimen or TIRF-SIM results with subtle 

background, aatt is generally set to zero to turn off the OTF attenuation. For raw data with strong 

background fluorescence, it is usually set to 0.9~1 to effectively suppress the background 

information. Also, the width of the Gaussian function kσ is designed to adjust the area of the 

attenuation function. An excessively low value of kσ will result in abundant residual backgrounds 

in the SR image. On the contrary, an excessively high value will remove most of the low-

frequency information of the specimen and decrease the signal-to-noise ratio of the final SR 

image. In most cases, the attenuation width of 1.0~2.0 cycles/micron is acceptable and we set it 

as 1.5 cycles/micron by default. 

In this note, we demonstrate that the OTF compensation and OTF attenuation in Wiener-

SIM equals preset filtering operations on the raw images. Thereinto, the former equals a low-
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pass filter H
*
(k), while the latter is identical to a high-pass filter [1-a(k)]. In addition, the OTF 

compensation and OTF attenuation can easily be cooperated to a new filter H
*
(k)[1-a(k)]. The 

selection of the high-pass filter [1-a(k)] to suppress the out-of-focus background is somewhat 

intuitive and empirical. It was derived from the OTF attenuation method in conventional Wiener-

SIM, which was empirically designed to attenuate the additional background term in the 

separated spectrums (see Section 2.1 of the Supplementary Notes). Although it eventually 

becomes a high-pass filter on the raw images in the JSFR method, it’s not the straightforward 

application of the general high-pass filtering. Therefore, the concept to suppress the low-

frequency background of the JSFR method has some similarity to conventional optical sectioning 

structured illumination microscopy based on spectrum filtering like the HiLo method
51

, but the 

concrete procedures and the source of ideas are different.  
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Supplementary Note 3: Resolution enhancement of the JSFR-SIM 

To calibrate the spatial resolution of JSFR-SIM, we tested sparsely distributed fluorescent 

beads with a diameter of 40 nm (505/515, Thermo Fisher Scientific Inc., USA) and recovered the 

separate Wiener-SIM and the JSFR-SIM OS-SR-SIM images (Fig. 3). The adjacent two beads 

which are unable to be resolved in the widefield image are separated in the JSFR-SIM and 

Wiener-SIM images (Fig. 3b). To qualify the spatial resolution, 30 isolated fluorescent beads are 

selected and their full width at half maximum (FWHM) along the x- and z-axes are measured and 

counted. The averaged FWHM values in xy dimensions for wide-field, JSFR-SIM, and Wiener-

SIM are measured as 232±12 nm, 108±5 nm, and 111±6 nm, respectively. Thus, the lateral 

resolution of both JSFR-SIM and Wiener-SIM show an improvement of ~115% relative to wide-

field microscopy. Further, the averaged FWHM values along the z-axis are 626±14 nm, 643±13 

nm, and 649±16 nm, respectively. Although the JSFR-SIM and Wiener-SIM cannot improve the 

axial resolution, the out-of-focus background is significantly reduced, as exhibited by the xz 

cross-sectioned images of the isolated bead in Fig. 3c. 

In addition, we also compared their resolution performance by analyzing the reconstruction 

results of a commercially available standard specimen, Argo-SIM (Fig. S4). The pattern E in 

Argo-SIM is “gradually spaced lines pairs” patterns in which the distance between the lines pairs 

gradually increases from 0 to 390 nm with a step of 30 nm. For the widefield microscope, the 

eighth line pair is too vague to be discerned, indicating the resolution of the widefield 

microscope is less than 210 nm. As a comparison, in the SR image recovered by the custom-

developed Wiener-SIM, JSFR-SIM, and the open-source Fiji plugin FairSIM, the fifth line pairs 

can be distinguished, indicating the resolution achieved by these algorithms is higher than 120nm. 
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This result is consistent with the measurement results of fluorescent beads. The intensity profiles 

in Fig. S4j provided a more distinct comparison of the resolution performance of each algorithm.  
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Supplementary Note 4: Details of sample preparations 

Fluorescent, 40 nm diameter beads and the commercial Argo-SIM slide were employed as 

standard specimens to evaluate the performance of JSFR-SIM. The carboxylate-modified 

fluospheres (yellow-green fluorescent 505/515, F8795, Thermo Fisher Scientific Inc, USA) were 

first diluted 200 times and dispensed onto the coverslip. The suspension on the coverslip was 

dried in air for 3 h, and then covered by a drop (3 µL) of Prolong Gold reagent (No. P36934, 

ThermoFisher Inc., USA). The refractive index of Prolong Gold is 1.526, which is close to the 

refractive index of the mounting medium (1.515) for the oil-immersion objective lens, reducing 

the spherical aberration caused by refractive-index-mismatch. 

COS-7 cells were purchased from American Type Culture Collection (ATCC). Cells were 

cultured in high-glucose DMEM supplemented with 10% FBS and 1% 100 mM sodium pyruvate 

solution (Sigma-Aldrich, S8636) and grown under standard cell culture conditions (5% CO2, 

humidified atmosphere at 37°C). Prior to imaging, cells were plated on DMEM/Ham's F-12 pre-

incubated glass coverslips for 24 h. For cell passage, cells were washed with PBS (Life 

Technologies, #14190500BT) and digested with trypsin (Gibco, #25200-056). All cell lines were 

routinely tested for potential mycoplasma contamination (MycoAlert, Lonza) and all tests were 

negative. To label mitochondria, cells were incubated with 500 nM PK Mito Deep Red
52

 in 

DMEM at 37 °C for 30 min and washed with PBS 3 times. To label microtubules and cargo, 

COS-7 cells were transfected with 4μg MAP4-GFP. Experiments were conducted 24 h after 

DNA transfection.  

The DNA was transfected into the cells using a 2D Nucleofector Device (Lonza). On the 

day of electroporation, trypsinized cells were transiently transfected with an electroporation cup 

(BIORAD, #165-2086) using program W-001 for COS-7 cells. The electroporation buffer 
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contains solution I and solution II. Solution I contains 2 g ATP-disodium salt (Sigma Aldrich, 

A2383), 1.2 g MgCl2-6H2O (Sigma Aldrich, M2393), with ddH2O up to 10 ml; Solution II 

contains 6 g KH2PO4 (Sigma Aldrich, P5655), 0.6 g NaHCO3 (Sigma Aldrich, S-5761), 0.2 g 

glucose (Sigma Aldrich, G-6152), adjust pH to 7.4, and add ddH2O to 500 ml. After filter 

sterilization (0.22 μm), 80 μl Solution I was mixed with 4 ml Solution II and stored at 4°C for up 

to one month. Experiments were conducted 24 h after DNA transfection. 
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Supplementary Figures: 

 

Fig. S1 JSFR-SIM with OTF attenuation significantly suppresses both background fluorescence and honeycomb 

artifacts. (a) The wide-field image of mitochondria in COS7 cells. (b) The SIM image recovered using the Wiener-

SIM algorithm without using OTF attenuation. (c) The SIM image reconstructed using the Wiener-SIM algorithm 

with OTF attenuation. (d) The enlarged spectrum in (b). (e) The enlarged spectrum in (c). (f) The widefield image of 

the yellow-boxed region in (c). (g) The SR image reconstructed using SDR. (g) The SR-OS image reconstructed 

using the JSFR-SIM algorithm with both OTF compensation and OTF attenuation. (h) The OS-SR image 

reconstructed using the Fair-SIM plugin for ImageJ which incorporates OTF attenuation. Scale bars: (a)-(c) 5 μm; 

(f)-(i) 2 μm.   
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Fig. S2 Comparison of the workflow of Wiener-SIM and JSFR-SIM. (a) The workflow of Wiener-SIM. (b) The 

workflow of JSFR-SIM. (c) Comparison of the computing burden of Wiener-SIM and JSFR-SIM. (d) Definition of 

the symbols in panels a-c. 
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Fig. S3 Layout of the custom-built SR-SIM setup. (a) Schematic of the SR-SIM system. The incident laser beam is 

first diffracted into various orders after being modulated by the SLM. Afterward, the ±1-orders diffraction orders are 

selected with a spatial filter. These two coherent beams are then converted to circular polarization and relayed onto 

the back focal plane of the microscope objective, producing sinusoidal patterns on the specimen. Shift and rotation 

of the illumination field are achieved by changing the binary patterns on the SLM. PBS: polarized beam splitter; 

SLM: spatial light modulator; FLC: ferroelectric liquid crystal phase retarders; HWP: half-wave plate; QWP: 

quarter-wave plate; ExFilter: excitation filter; EmFilter: emission filter; DM: dichroic mirror. (b) A photograph of 

the custom-built SR-SIM steup.   
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Fig. S4 The lateral resolution of the SIM reconstruction algorithms is comparable. (a) The Argo-SIM slide used to 

assess resolution. Pattern E of the slide consists of 36 μm-long lines spaced increasingly further apart using a step 

size of 30 nm. (b) The wide-field image of the lines. (c)-(e) are OS-SR-SIM images of the lines recovered with 

Wiener-SIM, JSFR-SIM, and Fair-SIM plugin, respectively. (f)-(i) are the close-up views of the widefield and SR-

SIM images recovered with Wiener-SIM, JSFR-SIM, and Fair-SIM plugin, as indicated by the yellow-boxed region 

in (a). Panel (j) is the intensity profiles of the images along the green dashed lines in (f)-(i). The negative intensity 

values in the reconstructed images are truncated at the last step of JSFR-SIM and Wiener-SIM. Scale bars: (b)-(e) 5 

μm; (f)-(i) 2 μm. 
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Fig. S5 JSFR-SIM enables dual-color, 3D, dynamic observation of thick COS-7 cells (Video 2). Microtubules (gray) 

and mitochondria (red) of the COS-7 cells are respectively stained with sfGFP and MitoTracker Red. Each 3D 

image is obtained by scanning the focal plane of the system through the cells with a scanning interval of 300 nm and 

scanning planes of 30. The time series consists of ten 3D volumes at a time interval of 15 seconds. (a) The 

maximum-intensity-projection image of the cell along the z-axis at the time t=0, in which the microtubules and the 

mitochondria are respectively rendered in gray and red. (b) The yz cross-section image of the volume t=0 along the 

vertical dashed line in (a). (c) The xz cross-section of the volume t=0 along the horizontal dashed line in (a). (d)-(f) 

are the maximum-intensity-projection images of the cells at three of the ten time-points, focused on the white-boxed 

region in panel (a). Scale bars: (a) 5 μm; (d)-(e) 2 μm. 
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Fig. S6 Real-time observation enables the observer to fast skip undesirable FOVs which contain limited numbers of 

healthy mitochondria. (a) Unhealthy mitochondria with thin filaments are not well stained with mitochondria-

specific dye. (b) Swollen mitochondria after long-term, high-power exposure. The extended exposure time damages 

the mitochondria, resulting in poor imaging.  
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Fig. S7 Diagrams to clarify the relationship of the reconstruction workflows in the Fourier domain and real space. (a) 

The relation diagram of the three workflows, including the reconstruction workflow implemented in the Fourier 

domain (green); the reconstruction workflow implemented in real space (orange); and the derived reconstruction 

workflow (blue) in real space. (b) Raw sample, SIM images. (c) A super-resolution image reconstructed with the 

raw images in (b). (d) The three spectrum components are separated from the raw images of single pattern 

orientation in Fourier domain processing. Spectra in panel (e) are the Fourier transform of the three recombined 

images of (f) in real space. The mathematical relation of (d) and (e)-(f) was described by Eqs. (22)-(23) in 

Supplementary Note 1.  


